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Abstract
By explaining how humans would solve a
given task, human rationales can provide strong
learning signal for neural language models
(NLMs). Explanation regularization (ER) aims
to improve NLM generalization by pushing the
NLM’s machine rationales (Which input tokens
did the NLM focus on?) to align with human
rationales (Which input tokens would humans
focus on?). Though prior works primarily study
ER via in-distribution (ID) evaluation, out-of-
distribution (OOD) generalization is often more
critical in real-world scenarios, yet ER’s ef-
fect on OOD generalization has been underex-
plored. In this paper, we introduce ER-TEST,
a framework for evaluating ER models’ OOD
generalization along three dimensions: unseen
datasets, contrast set tests, and functional tests.
Using ER-TEST, we comprehensively analyze
how ER models’ OOD generalization varies
with the rationale alignment criterion (loss func-
tion), human rationale type (instance-level vs.
task-level), number and choice of rationale-
annotated instances, and time budget for ra-
tionale annotation. Across two tasks and six
datasets, we show that ER has little impact on
ID performance but yields large OOD perfor-
mance gains, with the best ER criterion being
task-dependent. Also, ER can improve OOD
performance even with task-level or few hu-
man rationales. Finally, we find that rationale
annotation is more time-efficient than label an-
notation for improving OOD performance. Our
results with ER-TEST help demonstrate ER’s
utility and establish best practices for using ER
effectively.

1 Introduction

Neural language models (NLMs) have achieved
state-of-the-art performance on a broad array of
natural language processing (NLP) tasks (Devlin
et al., 2018; Liu et al., 2019). Even so, NLMs’ rea-
soning processes are notoriously opaque (Rudin,
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Figure 1: Explanation Regularization (ER). ER improves
model generalization on NLP tasks by pushing the model’s
machine rationales (Which input tokens did the model focus
on?) to align with human rationales (Which input tokens would
humans focus on?) (Sec. 2).

2019; Doshi-Velez and Kim, 2017; Lipton, 2018),
which has spurred significant interest in designing
algorithms to automatically explain NLM behav-
ior (Denil et al., 2014; Sundararajan et al., 2017;
Camburu et al., 2018; Rajani et al., 2019; Luo et al.,
2021). Most of this work has focused on rationale
extraction, which explains a NLM’s output on a
given task instance by highlighting the input tokens
that most influenced the output (Denil et al., 2014;
Sundararajan et al., 2017; Li et al., 2016; Jin et al.,
2019; Lundberg and Lee, 2017; Chan et al., 2022).

Recent studies have investigated how machine
rationales outputted by rationale extraction algo-
rithms can be utilized to improve NLM decision-
making (Hase and Bansal, 2021; Hartmann and
Sonntag, 2022). Among these prior works, the
most common paradigm is explanation regulariza-
tion (ER), which aims to improve NLM by regu-
larizing the NLM to yield machine rationales that
align with human rationales (Fig. 1) (Ross et al.,
2017; Huang et al., 2021; Ghaeini et al., 2019;
Zaidan and Eisner, 2008; Kennedy et al., 2020;
Rieger et al., 2020; Liu and Avci, 2019). Human ra-
tionales can be created by annotating each training
instance individually (Lin et al., 2020; Camburu
et al., 2018; Rajani et al., 2019) or by applying
task-level human priors across all training instances



(Rieger et al., 2020; Ross et al., 2017; Liu and Avci,
2019).

Though prior works primarily evaluate ER mod-
els’ in-distribution (ID) generalization, the results
are mixed, and it is unclear when ER is actually
helpful. Furthermore, out-of-distribution (OOD)
generalization is often more crucial in real-world
settings (Chrysostomou and Aletras, 2022; Ruder,
2021), yet ER’s impact on OOD generalization has
been underexplored (Ross et al., 2017; Kennedy
et al., 2020). In particular, due to the lack of unified
comparison of different works using ER, little is un-
derstood about how OOD performance is affected
by major design choices in building an ER pipeline,
like the rationale alignment criterion (i.e., loss func-
tion), human rationale type (instance-level vs. task-
level), number and choice of rationale-annotated
instances, and time budget for rationale annotation.
In light of this, we propose ER-TEST 1(Fig. 2), a
framework for evaluating ER methods’ OOD gen-
eralization via: (1) unseen datasets, (2) contrast
set tests, and (3) functional tests. For (1), ER-
TEST tests ER models’ performance on datasets
beyond their training distribution. For (2), ER-
TEST tests ER models’ performance on real-world
data instances that are semantically perturbed. For
(3), ER-TEST tests ER models’ performance on
synthetic data instances created to capture specific
linguistic capabilities.

Using ER-TEST, we study four questions: (A)
Which rationale alignment criteria are most effec-
tive? (B) Is ER effective with task-level human
rationales? (C) How is ER affected by the num-
ber/choice of rationale-annotated instances? (D)
How does ER performance vary with the ratio-
nale annotation time budget? For two text clas-
sification tasks, we show that ER has little im-
pact on ID performance but yields large gains on
OOD performance, with the best ER criteria being
task-dependent (Sec. 5.2). Furthermore, ER can
improve OOD performance even with distantly-
supervised (Sec. 5.3) or few (Sec. 5.4) human ra-
tionales. Finally, we find that rationale annotation
yields more improvements than label annotation,
specifically with limited time-budget for annotat-
ing (Sec. 5.5). ER-TEST results further show ER’s
utility and establish best practices for using ER
effectively.

1Code available at https://github.com/INK-USC/ER-Test.

2 Explanation Regularization (ER)

Given an NLM for an NLP task, the goal of ER
is to improve NLM generalization on the task by
pushing the NLM’s (extractive) machine rationales
(Which input tokens did the NLM focus on?) to
align with human rationales (Which input tokens
would humans focus on?). The hope is that this
inductive bias encourages the NLM to solve the
task in a manner that follows humans’ reasoning
process.

Let F be an NLM for M -class text classification.
F usually has a BERT-style architecture (Devlin
et al., 2018), consisting of a Transformer encoder
(Vaswani et al., 2017) followed by a linear layer
with softmax classifier. Let xi = [xti]

n
t=1 be the

n-token input sequence (e.g., a sentence) for task
instance i. Let yi denote F’s predicted class for
xi. Given F , xi, and yi, the goal of rationale ex-
traction is to output machine rationale ri = [rti ]

n
t=1,

such that each 0 ≤ rti ≤ 1 is an importance score
indicating how strongly token xti influenced F to
predict class yi (Luo et al., 2021). Let G denote a
rationale extractor, such that ri = G(F ,xi, yi).
G can also be used to compute machine ratio-

nales w.r.t. other classes besides yi (e.g., target
class ẏi). Let r̂i denote the machine rationale for
xi w.r.t. ẏi. Given r̂i obtained via G and F , many
works have explored ER, in which F is regular-
ized such that r̂i aligns with human rationale ṙi
(Zaidan and Eisner, 2008; Lin et al., 2020; Rieger
et al., 2020; Ross et al., 2017). ṙi can either be
human-annotated for individual instances, or gen-
erated via human-annotated lexicons for a given
task. Typically, ṙi is a binary vector, where ones
and zeros indicate positive (important) and negative
(unimportant) tokens, respectively.

We formalize the ER loss as: LER = Φ(r̂i, ṙi),
where Φ is an ER criterion measuring alignment
between r̂i and ṙi. Thus, the full learning objective
is: L = Ltask + λERLER, where Ltask is the task
loss (e.g., cross-entropy loss) λER ∈ R is the ER
strength (i.e., loss weight) for LER. While there are
many choices for Φ, it is unclear how Φ impacts
training and when certain Φ should be preferred.
Also, as a baseline, let FNo-ER denote an NLM that
is trained without ER, such that L = Ltask.

3 ER-TEST

Existing works primarily evaluate ER models via
ID generalization (Zaidan and Eisner, 2008; Lin
et al., 2020; Rieger et al., 2020; Liu and Avci, 2019;

https://github.com/INK-USC/ER-Test
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Figure 2: ER-TEST Framework. While existing ER works focus on ID generalization, ER-TEST evaluates ER’s
OOD generalization w.r.t. (A) unseen datasets, (B) contrast set tests, and (C) functional tests (Sec. 3, A.2.3).

Ross et al., 2017; Huang et al., 2021; Ghaeini et al.,
2019; Kennedy et al., 2020), though a small num-
ber of works have done auxiliary evaluations of
OOD generalization (Ross et al., 2017; Kennedy
et al., 2020; Rieger et al., 2020). However, these
OOD evaluations have been relatively small-scale,
only covering a narrow range of OOD generaliza-
tion aspects, ER criteria, tasks, and datasets. As
a result, little is understood about ER’s impact on
OOD generalization. To address this gap, we pro-
pose ER-TEST (Fig. 2), a framework for designing
and evaluating ER models’ OOD generalization
along three dimensions: (1) unseen dataset tests;
(2) contrast set tests; and (3) functional tests.

Let D be an M -class text classification dataset,
which we call the ID dataset. Assume D can be
partitioned into training set Dtrain, development set
Ddev, and test set Dtest, where Dtest is the ID test set
for D. After training F on Dtrain with ER, we mea-
sure F ’s ID generalization via task performance on
Dtest and F’s OOD generalization via (1)-(3).

3.1 Unseen Dataset Tests
First, we evaluate OOD generalization w.r.t. un-
seen datasets (Fig. 2A). Besides D, suppose we
have datasets {D̃(1), D̃(2), ...} for the same task as
D. Each D̃(i) has its own train/dev/test sets and
distribution shift from D. After training F with
ER on Dtrain and hyperparameter tuning on Ddev,
we measure F’s performance on each OOD test
set D̃(i)

test. This tests ER’s ability to help F learn
general (i.e., task-level) knowledge representations
that can (zero-shot) transfer across datasets.

3.2 Contrast Set Tests
Second, we evaluate OOD generalization w.r.t. con-
trast set tests (Fig. 2B). Dataset annotation artifacts
(Gururangan et al., 2018) can cause NLMs to learn
spurious decision rules that work on the test set but
do not capture linguistic abilities that the dataset
was designed to assess. Thus, we test F on contrast
sets (Gardner et al., 2020), which are constructed

by manually perturbing the test instances of real-
world datasets to express counterfactual meanings.
Contrast set tests reveal the dataset’s intended deci-
sion boundaries and if F has learned undesirable
dataset-specific shortcuts. Given D̃(i)

test, we can con-
vert D̃(i)

test to contrast set C̃(i)
test using various types of

semantic perturbation, such as inversion (e.g., “big
dog” → “small dog”), numerical modification (e.g.,
“one dog” → “three dogs”), and entity replacement
(e.g., “good dog” → “good cat”). However, since
contrast sets are built from real-world datasets, they
provide less flexibility in testing linguistic abilities,
as a given perturbation type may not apply to all in-
stances in the dataset. Note that, unlike adversarial
examples (Gao and Oates, 2019), contrast sets are
not conditioned on F specifically to attack F .

3.3 Functional Tests
Third, we evaluate OOD generalization w.r.t. func-
tional tests (Fig. 2C). Whereas contrast sets are cre-
ated by perturbing real-world datasets, functional
tests evaluate F on synthetic datasets, which are
manually created via templates to assess specific
linguistic abilities (Ribeiro et al., 2020; Li et al.,
2020). While contrast set tests focus on semantic
abilities, functional tests consider both semantic
(e.g., perception of word/phrase sentiment, sensi-
tivity to negation) and syntactic (e.g., robustness
to typos or punctuation addition/removal) abilities.
Therefore, functional tests trade off data realism
for evaluation flexibility. If ER improves F ’s func-
tional test performance for a given ability, then ER
may be a useful inductive bias for OOD generaliza-
tion w.r.t. that ability. Across all tasks, ER-TEST

contains four general categories of functional tests:
Vocabulary, Robustness, Logic, and Entity (Ribeiro
et al., 2020). See Sec. A.2.3 for more details.

4 ER-TEST Design Choices

An ER model consists of three key components:
rationale alignment criterion, type of human ratio-
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Figure 3: Experiment Setup: We use ER-TEST to investigate four research questions. (Sec. 5).

nales, and instance selection strategy. ER-TEST

evaluates the design choices for each component.

4.1 Rationale Alignment Criteria
Compared to existing works, ER-TEST uses a
wider range of rationale alignment criteria to eval-
uate ER model generalization. This provides a
more comprehensive picture of ER’s impact on
both ID and OOD generalization, helping us un-
derstand why and when certain criteria work well.
To demonstrate ER-TEST’s utility, we consider
six representative rationale alignment criteria (i.e.,
choices of Φ), described below.

Mean Squared Error (MSE) is used in Liu
and Avci (2019), Kennedy et al. (2020), and Ross
et al. (2017): ΦMSE(r̂i, ṙi) =

1
n∥r̂i − ṙi∥22.

Mean Absolute Error (MAE) is used in Rieger
et al. (2020): ΦMAE(r̂i, ṙi) =

1
n |̂ri − ṙi|.

Binary Cross Entropy (BCE) loss is used
in Chan et al. (2022) and Chan et al. (2021):
ΦBCE(r̂i, ṙi) = − 1

n

∑n
t=1 ṙ

t
i log(r̂

t
i).

Huber Loss (Huber, 1992) is a hybrid of MSE
and MAE, but is still unexplored for ER. Our exper-
iments use the default δ = 1 (Paszke et al., 2019).

ΦHuber(r̂i, ṙi)

=

{
1
2
ΦMSE(r̂i, ṙi), ΦMAE(r̂i, ṙi) < δ

δ(ΦMAE(r̂i, ṙi)− 1
2
δ), otherwise

(1)

Order Loss Recall that the human rationale
ṙi labels each token as positive (one) or negative
(zero). Whereas other criteria generally push pos-
itive/negative tokens’ importance scores to be as
high/low as possible, order loss (Huang et al., 2021)
relaxes MSE to merely enforce that all positive to-
kens’ importance scores are higher than all negative
tokens’ importance scores. This is especially useful
if ṙi is somewhat noisy (e.g., some positive-labeled
tokens should not really be positive).

ΦOrder(r̂i, ṙi) =
∑
ṙti=1

(
min

(
r̂ti

max
ṙtj=0

r̂tj
− 1, 0

))2

(2)

KL Divergence (KLDiv) is used by Pruthi et al.
(2020), Chan et al. (2022), and Chan et al. (2021):
ΦKLDiv(r̂i, ṙi) =

1
n

∑n
t=1 ṙ

t
i log(ṙ

t
i / r̂

t
i).

Machine Rationale Extractors We consider
three types of machine rationale extractors:
gradient-based, which computes rationales via
F(xi)’s gradients (Sundararajan et al., 2017;
Sanyal and Ren, 2021; Shrikumar et al., 2017);
attention-based, which computes rationales via
F(xi)’s attention weights (Ding and Koehn, 2021;
Wiegreffe and Pinter, 2019); and learned, which
trains a model to compute rationales w.r.t. faith-
fulness and/or plausibility objectives (Chan et al.,
2022). While other rationale extractor types, such
as perturbation-based (Li et al., 2016), can also be
used, we focus on the first three types since they
are relatively less compute-intensive. In our experi-
ments, we use Input*Gradient (IxG) (Denil et al.,
2014), Attention (Attn) (Ding and Koehn, 2021),
and UNIREX (Chan et al., 2022) as representatives
for these three types, respectively.

4.2 Types of Human Rationales

Unlike prior works, ER-TEST considers both
instance-level and task-level human rationales.

Instance-Level Rationales Human rationales
are often created by annotating each training in-
stance individually (Lin et al., 2020; Camburu et al.,
2018; Rajani et al., 2019). For each instance, hu-
mans are asked to mark tokens that support the
gold label as positive, with the remaining tokens
counted as negative. Here, each human rationale is
specifically conditioned on the input and gold la-
bel for the given instance. However, instance-level
rationales are expensive to obtain, given the high
manual effort required per instance.

Task-Level Rationales Some works construct
distantly-supervised human rationales by apply-
ing task-level human priors across all training in-
stances (Kennedy et al., 2020; Rieger et al., 2020;
Ross et al., 2017; Liu and Avci, 2019). Given a
task-level token lexicon, each instance’s rationale
is created by marking input tokens present in the
lexicon as positive and the rest as negative, or vice
versa. Here, rationales are not as fine-grained or
tailored for the given dataset, but may provide a
more general learning signal for solving the task.



4.3 Instance Selection Strategies

In real-world applications, it is often infeasible to
annotate instance-level human rationales ṙi for all
training instances (Chiang and Lee, 2022; Kaushik
et al., 2019). Besides task-level rationales, another
approach for addressing this issue could be to an-
notate only a subset Strain ⊂ Dtrain of training
instances. Given a constant budget of |Strain| =
k

100 |Dtrain| instances, where 0 < k < 100, our goal
is to select Strain such that ER with Strain maximizes
F ’s task performance. While instance selection via
active learning is well-studied for general classi-
fication (Schröder and Niekler, 2020), this prob-
lem has not been explored in ER. Given non-ER
NLM FNo-ER, we use ER-TEST to compare five
active-learning-inspired instance selection strate-
gies. Note that these are just basic strategies, used
to show ER-TEST’s utility. In practice, one could
consider more sophisticated strategies that account
for other factors like data diversity.

Random Sampling (Rand) constructs Strain by
uniformly sampling |Strain| instances from D.

Lowest Confidence (LC) selects the |Strain| in-
stances for which FNo-ER yields the lowest target
class confidence probability FNo-ER(ẏi|xi) (Zheng
and Padmanabhan, 2002).

Highest Confidence (HC) selects the |Strain|
instances for which FNo-ER yields the highest target
class confidence probability FNo-ER(ẏi|xi). This is
the opposite of LC.

Lowest Importance Scores (LIS) Given ma-
chine rationale r̂i for FNo-ER and 0 < k′ < 100, let
r̂
(k′)
i denote a vector of the top-k% highest impor-

tance scores in r̂i. With rS = (1/|̂r(k
′)

i |)
∑

r̂
(k′)
i

as the mean score in r̂
(k′)
i , LIS selects the |Strain|

instances for which rS is lowest. This is similar to
selecting instances with the highest r̂i entropy.

Highest Importance Scores (HIS) Given rS ,
HIS selects the |Strain| instances for which rS is
highest. This is the opposite of LIS.

5 Experiments

Now that ER-TEST lays a foundation for evalu-
ation and design choices, we conduct a system-
atic study of the ER pipeline through four research
questions (Fig. 3).

First, we compare different rationale alignment
criteria and analyse which performs better for
which task. (RQ1: Sec. 5.2). Second, we com-
pare ER pipelines with different types of available

human rationales: either dense, instance-level vs.
distantly-supervised task-level rationales. (RQ2:
Sec. 5.3) Third, we look into strategies on how
to select instances on which ER should be ap-
plied, given resource constraints on the number
of rationale-annotated samples. (RQ3: Sec. 5.4).
Lastly, we investigate whether ER is worth doing,
given a time-budget to obtain rationale-annotated
instances, while comparing it methods without ER
and the same time-budget to obtain more labelled
data. (RQ4: Sec. 5.5).

5.1 Tasks and Datasets
ER-TEST uses a diverse set of text classification
tasks. We mainly focus on sentiment analysis and
natural language inference (NLI), but also consider
named entity recognition (NER) and hate speech
detection in Appendix A.5.2 First, for sentiment
analysis, we use SST (short movie reviews) (Socher
et al., 2013; Carton et al., 2020) as the ID dataset.
As OOD datasets, we use Yelp (restaurant reviews)
(Zhang et al., 2015), Amazon (product reviews)
(McAuley and Leskovec, 2013), and Movies (long
movie reviews) (Zaidan and Eisner, 2008; DeY-
oung et al., 2019). Second, for NLI, we use e-
SNLI (Camburu et al., 2018; DeYoung et al., 2019)
and MNLI (Williams et al., 2017) as the ID and
OOD datasets, respectively. See Sec. A.3.1 for
more details about datasets, dataset-specific con-
trast/functional tests, and other tasks.

5.2 RQ1: Which rationale alignment criteria
are most effective?

Here, we study the effectiveness of different ratio-
nale alignment criteria specified in ER-TEST for
two tasks - sentiment analysis and NLI.

Setup. Rationale alignment criteria described in
Section 4.1 are used to align instance-level ratio-
nales for the train set (ID datasets SST and e-SNLI
for sentiment analysis and NLI tasks respectively).
For the NLM architecture, we use BigBird-Base
(Zaheer et al., 2020), in order to handle input se-
quences of up to 4096 tokens. For all results, we
report the mean over three seeds, as well as the stan-
dard deviation. We use a learning rate of 2e−5 and
effective batch size of 32. Further implementation
details are in Appendix A.3.3.

Results. Tables 1 and 2, and Figure 4 summarize
the results for this research question.
ID Generalization. We observe (Table 1) that using
ID task performance, it is difficult to distinguish



Methods

Sentiment Analysis NLI

In-Distribution Out-of-Distribution In-Distribution Out-of-Distribution

SST Amazon Yelp Movies e-SNLI MNLI

None 94.22 (±0.77) 90.72 (±1.36) 92.07 (±2.66) 89.83 (±6.79) 76.18 (±1.28) 46.15 (±4.38)

IxG+MSE 94.29 (±0.05) 90.58 (±0.77) 92.17 (±0.64) 90.00 (±5.63) 78.98 (±1.00) 54.23 (±2.67)
IxG+MAE 94.11 (±0.38) 92.02 (±0.25) 94.55 (±0.30) 95.50 (±1.32) 78.77 (±1.01) 52.41 (±4.50)
IxG+BCE 94.15 (±0.53) 90.70 (±1.19) 91.82 (±2.30) 92.00 (±6.98) 79.07 (±0.83) 53.68 (±4.15)

IxG+Huber 94.19 (±0.19) 90.43 (±1.45) 92.38 (±2.11) 91.83 (±3.75) 78.99 (±0.81) 53.97 (±3.11)
IxG+Order 94.37 (±0.11) 89.47 (±2.71) 87.95 (±6.36) 84.50 (±10.15) 79.11 (±0.87) 55.26 (±3.56)
IxG+KLDiv 94.62 (±0.61) 91.63 (±0.51) 93.55 (±1.69) 93.00 (±2.18) 73.68 (±4.77) 46.57 (±1.35)
Attn+MSE 94.71 (±0.75) 91.88 (±0.53) 94.70 (±0.18) 95.83 (±1.15) 76.04 (±0.43) 48.60 (±2.55)

Attn+KLDiv 94.29 (±0.65) 91.43 (±0.71) 94.58 (±0.51) 96.67 (±0.76) 77.35 (±0.59) 49.66 (±2.47)
UNIREX 93.30 (±1.06) 83.27 (±6.43) 92.30 (±1.36) 93.00 (±0.50) 72.23 (±0.97) 42.92 (±3.35)

Table 1: RQ1: Which rationale alignment criteria are most effective?: Metrics displayed are Accuracy (↑) for sentiment
analysis and Macro F1 (↑) for NLI. Cells highlighted in blue show significant improvement over the None baseline. (p < 0.05)

between different rationale alignment criteria, as
all of them yield about the same task performance
as the None baseline (for both SST and eSNLI).
Unseen Datasets. For sentiment analysis, MAE
yields significant gains over all other rationale
alignment criteria. However, despite performing
best on SST, Order performs much worse than all
other rationale alignment criteria. For NLI, Or-
der loss leads to the highest performance with the
MNLI dataset. Overall, OOD task performance
is much better than ID at distinguishing between
ER criteria, especially showing ER’s improvement
over None.

ER Criteria

Contrast Set

Sentiment Analysis NLI

Original Contrast ∆ Original Contrast ∆

None 88.39 (±2.05) 85.11 (±2.72) -3.28 46.15 (±4.38) 43.73 (±2.81) -2.42

IxG+MSE 88.11 (±2.33) 86.07 (±2.48) -2.04 54.23 (±2.67) 51.95 (±1.21 ) -2.28
IxG+MAE 91.12 (±0.59) 89.82 (±1.20) -1.30 52.41 (±4.50) 52.02 (±1.49) -0.39
IxG+BCE 89.55 (±1.42) 87.30 (±4.03) -2.25 53.68 (±4.15) 52.37 (±1.42) -1.31

IxG+Huber 89.20 (±1.67) 86.13 (±1.74) -3.07 53.97 (±3.11) 52.32 (±1.04) -1.65
IxG+Order 86.00 (±5.27) 83.40 (±6.16) -2.60 55.26 (±3.56) 52.78 (±0.74) -2.48

Table 2: RQ1 - Contrast Set Tests: ∆ (↓) is the difference
in performance of F between the contrast and original set. A
value farther from 0 suggests that F has learnt shortcuts spe-
cific a dataset, which are not generalizable. Cells highlighted
in pink show least drop in performance with a contrast set.

Contrast Set Tests. We observe (Table 2) the drop
in performance (∆) for sentiment analysis and NLI
when using a contrast set designed for the given
dataset. MAE leads to the least drop in performance
and all methods apart from Order yield lower drops
than None. All of them also have a higher per-
formance on the original and contrast sets. For
sentiment analysis, we observe that Order has the
highest variance, and for NLI, it has the highest
drop in performance. We believe that some of it
can be attributed to the soft-ranking that is imposed
by Order, which may be indifferent towards mi-
nor label-changing edits, that is observed by the
contrast sets.

Figure 4: RQ1 - Funtional Tests: Shown here are Failure
Rates (out of 100) (↓) for four functional tests (See. Table
11). Each rationale alignment criterion corresponds to the IxG
rationale extractor.

Functional Tests. Figure 4 demonstrates failure
rates on functional tests. We observe that apart
from the entity-based tests, rationale alignment cri-
teria generally have lower failure rates than None.
Generally, all methods perform well on robustness-
based tests, as they have lower failure rates, with
order loss having the least. What is important to
note is the significant improvement by Order loss in
vocabulary-based tests than None, even though all
of the methods are exposed to the same training set
instances. We hypothesize that the biases induced
by ER alleviates the shortcuts learnt by None, also
demonstrated by an overall lower failure rate of
rationale alignment criteria.

5.3 RQ2: Is ER effective with distantly
supervised human rationales?

As described in Section 4.2, obtaining instance-
level rationales are expensive to obtain. In this
research question, we compare and contrast differ-
ences between instance-level and task-level human
rationales with ER-TEST, on the Sentiment Analy-
sis task.

Setup. In this RQ, we use the same setup for
instance-level rationales as described in RQ 1 (Sec.



5.2). For generating task-level rationales, we merge
the AFINN (Nielsen, 2011) and SenticNet (Cam-
bria et al., 2020) lexicons.

Rationale Type Criteria

Sentiment Analysis

In-Distribution Out-of-Distribution

SST Amazon Yelp Movies

None - 94.22 (±0.77) 90.72 (±1.36) 92.07 (±2.66) 89.83 (±6.79)

Instance-level
IxG+MAE 94.69 (±0.93) 91.28 (±0.74) 93.28 (±2.16) 94.83 (±2.08)
IxG+Huber 94.27 (±0.84) 91.17(±1.50) 93.40 (±1.45) 91.17 (±3.33)

Task-level
IxG+MAE 94.53 (±0.60) 92.02 (±0.45) 94.10 (±0.91) 95.83 (±1.26)
IxG+Huber 93.81 (±0.47) 91.05 (±1.45) 93.88 (±0.41) 94.00 (±0.50)

Table 3: RQ2: Instance-level vs. Task-level rationales. (Sec.
5.3). All values are Accuracy (↑).
Results. We show ID and OOD performance of
instance and task-based rationales in Table 3. Al-
though ID performance (SST) is comparable for
both rationale types, task-level rationales lead to
minor improvements in OOD cases (Amazon, Yelp,
Movies). We believe one of the reasons this boost
in performance is observed is because the lexicon
list used to generate rationales are task-specific
(for sentiment analysis) and dataset-agnostic, and
contain more general sentiment-related terms that
are also present in OOD datasets, unlike instance-
based rationales that contain nuances. However,
having general lexicons that are not nuanced pro-
hibits task-based models to generalise to harder
instances which may not be resolved by lexicons
themselves. This is observed by poor performance
of task-based rationales in both contrast set and
functional tests, when compared to instance-based
rationales. (More in Sec. A.5.1)

5.4 RQ3: How is ER affected by the
number/choice of training instances with
human rationales?

So far, we have looked into ER when rationales
(whether instance- or task-based) are available for
all of the instances. However, it is important to
determine which instances should be prioritized
for human rationales annotation when annotation
resources are limited. In this RQ, we investigate
the performance of the different instance-selection
methods outlined in Section 4.3, under varying
resource constraints.

Setup. For experiments in this RQ, we compare
the best performing rationale alignment criterion
(IxG+MAE) and vary the instance budget (k) be-
tween 5/15/50/100%. (More in Sec. A.6.1)

Results. Table 4 demonstrates that importance-
score based instance selection strategies (LIS,
HIS) generally yield better improvements in OOD

k% Method

Sentiment Analysis

In-Distribution Out-of-Distribution

SST Amazon Yelp Movies

None - 94.22 (±0.77) 90.72 (±1.36) 92.07 (±2.66) 89.83 (±6.79)
100 - 94.11 (±0.38) 92.02 (±0.25) 94.55 (±0.30) 95.50 (±1.32)

5
Random 94.36 (±0.05) 91.57 (±0.10) 93.36 (±0.15) 92.39 (±2.50)

LC 93.14 (±1.97) 90.72 (±0.43) 93.50 (±0.53) 93.17 (±1.26)
HC 94.32 (±0.42) 91.57 (±0.19) 93.03 (±0.81) 91.33 (±3.09)
LIS 93.92 (±1.07) 92.42 (±0.48) 94.28 (±0.31) 96.50 (±1.5)
HIS 93.94 (±0.83) 90.58 (±0.95) 91.47 (±2.37) 92.00 (±4.58)

50
Random 93.47 (±0.02) 90.28 (±1.42) 91.85 (±2.11) 89.78 (±5.68)

LC 87.07 (±5.15) 78.82 (±20.68) 77.73 (±26.53) 76.67 (±19.08)
HC 92.93 (±0.17) 92.15 (±0.36) 94.48 (±0.94) 91.00 (±6.50)
LIS 93.17 (±0.55) 90.60 (±0.25) 92.72 (±0.53) 93.50 (±0.87)
HIS 94.23 (±0.65) 88.85 (±2.67) 91.47 (±1.47) 93.67 (±1.89)

Table 4: Sample Selection Methods: Settings mentioned
in blue are significantly better than None settings. (See
Appendix 17 for more details)

datasets when compared to label-confidence based
strategies (LC, HC). Furthermore, certain instance
selection criterion (like LC) perform significantly
worse as the instance budget is increased. Zooming-
into LIS, we compare it to random sampling and
Non-ER settings in Figure 5. We can observe that
for low resource cases (5/50%), LIS leads to similar
OOD performance to k = 100% (using all samples
for ER), and is always greater than Random/Non-
ER. This also shows that carefully selecting a small
subset of samples for rationale annotation can yield
same benefits like that of annotating all the sam-
ples, with a lower annotation cost, and significant
improvements over Random/No-ER.

5.5 RQ4: How is ER affected by the time taken
to annotate human rationales?

So far, we explored questions surrounding ER that
assumed the ease of obtaining rationale-annotated
instances. However, obtaining rationales for ER
are not only tedious, but also time-consuming. In
this RQ, we benchmark the time efficiency of ER
through the lens of time taken to collect such data,
when compared to collecting labelled data without
rationales.

Setup. Our setup comprises of two steps - firstly,
estimating the time taken to annotate one instance
using Amazon Mechanical Turk (MTurk), followed
by using these estimates to create training sets with
varying time budgets. On MTurk2 (details in A.7),
we devise three tasks – one where the annotators
have to first select a sentiment for an instance, and
then highlight rationale tokens that support their
selected sentiment (Label + Expl), one where they
have to highlight the rationales given a ground truth
sentiment (Only Expl) and one baseline task where
they only have to label an instance with a sentiment

2https://www.mturk.com/



Figure 5: RQ3: How is ER affected by the number/choice of training instances with human rationales?: Task Performance
(Accuracy) vs. % of rationale-annotated data for different sample selection criteria on four sentiment analysis datasets.

Figure 6: RQ4: How is ER affected by the time taken to annotate human rationales?: Task Performance (Accuracy) vs.
time budget for rationale annotation, for each kind of annotation strategy, for each of the four sentiment analysis datasets. There
are 1000 instances in the baseline training set, and 1 hr of annotation corresponds to 42, 98 and 77 instances each for Label +
Expl, Only Expl and Only Label annotation tasks respectively. Annotation is done on ID dataset (SST) only.

(Only Label). For each of the above tasks, through
our MTurk experiments, our 178 Turkers yielded
mean/std times of 140.56s ± 8.45 (Only Label),
110.31s ± 3.21 (Only Expl), and 263.10s ± 7.31
(Label+Expl). By filtering out ‘cheaters’ who sub-
mitted empty/low-effort responses, we achieved
high inter-annotator agreement. For Only Label
and Label+Expl, the Fleiss’ kappa scores were
0.74 and 0.70. For Only Expl and Label+Expl, the
rationale overlap rates (Zaidan and Eisner, 2008)
were 0.78 and 0.66. We replicated this experiment
in a small-scale study with nine CS students and
observed similar trends.

Using these time estimates, we devise three ex-
periment settings. Given a baseline labelled train-
ing set Dbase of 1000 instances and a time budget
T , we can - 1) Add human rationales for a sub-
set ST

expl of Dbase, 2) Add new instances DT
label

with only labels to Dbase, or 3) Add new instances
DT

label+expl with labels and rationales to Dbase.
Note that, the number of new instances added in
each of the above experiment settings depend on
the time taken to annotate the Only Expl, Only
Label and Label + Expl tasks respectively.

Results. As we can observe in Figure 6, when
provided with a lower time budget for annotation
(≤ 5 hours), annotating rationales for existing in-
stances in the training set (Only Expl) yield im-
provements over adding new instances with labels
(and rationales), in all of the OOD datasets. How-
ever, their performance saturates over time. When
provided with a higher time-budget, adding new in-
stances with both labels and their rationales (Label
+ Expl) is better than only adding labelled data with-

out rationales (Only Label). This is even though
Label + Expl takes the most amount of time to
annotate, and thus fewer instances with these anno-
tations would be added with a given time budget. In
general, we observe that about 24 hours of Only La-
bel annotation yields the same OOD performance
with just 30 mins of Only Expl annotation. This
validates that ER not only provides improvements
in generalization, but also does it in a time- (and
cost-) efficient manner.

6 Related Work
Explanation-Based Learning Many methods
have been proposed for explanation-based learning
(Hase and Bansal, 2021; Hartmann and Sonntag,
2022), especially using human explanations (Tan,
2022). ER, which is based on machine-human ratio-
nale alignment, is a common paradigm for learning
from human explanations. In ER, the human ratio-
nale can be obtained by annotating each instance
individually (Zaidan and Eisner, 2008; Lin et al.,
2020; Camburu et al., 2018; Rajani et al., 2019;
DeYoung et al., 2019) or by applying domain-level
lexicons across all instances (Rieger et al., 2020;
Ross et al., 2017; Ghaeini et al., 2019; Kennedy
et al., 2020; Liu and Avci, 2019). Existing choices
of rationale alignment criteria include MSE (Liu
and Avci, 2019; Kennedy et al., 2020; Ross et al.,
2017), MAE (Rieger et al., 2020), BCE (Chan et al.,
2021), order loss (Huang et al., 2021), and KL di-
vergence (Chan et al., 2021). Beyond ER, there
are other ways to learn from explanations. Lu et al.
(2022) used human-in-the-loop feedback on ma-
chine rationales for data augmentation. Meanwhile,
Ye and Durrett (2022) used machine rationales to



calibrate black box models and improve their per-
formance on low-resource domains.

Evaluating ER Existing works have primarily
evaluated ER models via ID generalization (Zaidan
and Eisner, 2008; Lin et al., 2020; Huang et al.,
2021), which only captures one aspect of ER’s
impact. Meanwhile, a few works have consid-
ered auxiliary evaluations — e.g., machine-human
rationale alignment (Huang et al., 2021; Ghaeini
et al., 2019), task performance on unseen datasets
(Ross et al., 2017; Kennedy et al., 2020), social
group fairness (Rieger et al., 2020; Liu and Avci,
2019). Carton et al. (2022) showed that maximiz-
ing machine-human rationale alignment does not
always improve task performance, while human
rationales vary in their ability to provide useful
information for task prediction.

7 Conclusion and Future Work
In this work, we study explanation regularization
(ER) – aligning machine rationales with human ra-
tionales, in detail. We propose ER-TEST, that eval-
uates ER’s OOD generalization along three pillars
- unseen datasets, contrast set tests and functional
tests, and uses it to investigate four research ques-
tions surrounding the choice of the rationale align-
ment criterion, type of human rationale, choice of
and time taken to obtain rationale-annotation in-
stances. Although ER shows minor impact on ID
task performance, improvements on OOD datasets
is significant. Furthermore, ER not only works well
with dense, instance-level human rationales, but
also with distantly supervised task-level rationales.
Lastly, ER is shown to provide benefits even with
limited number of rationale-annotated instances,
or within time constraints for rationale annotation.
In future, we aim to study ER as a tool for im-
proving human-in-the-loop (HITL) debugging of
NLMs. Furthermore, currently ER-TEST is only
defined for extractive rationales. Human feedback
for free-text machine rationales is also a promising
extension for ER-TEST.
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9 Limitations

Some tests defined by ER-TEST might not be
applicable for all NLP tasks. It is difficult to
define tests like contrast set tests for certain NLP
tasks like NER. Furthermore, currently these tests
have been picked up from their respective releases,
however, they are extremely tedious to design and
generate for new tasks and datasets.

Current work simulates human rationales in
the ER pipeline. ER is meant to align machine-
generated rationales with human-rationales. How-
ever in our current work, we use human rationales
that are pre-annotated as part of the datasets we
use. This simulation of live human feedback is
used in rationale alignment criterion. We believe
this limitation can be easily addressed, by collect-
ing human-in-the-loop rationale annotations.

Current work assumes ER pipelines to be offline
in nature. Fine-tuning strategies have shown to
distort the underlying data distribution (Kumar
et al., 2022), therefore, once F undergoes ER, its
machine rationales can differ from before. Cur-
rently, ER is being studied in an offline manner –
once human rationales are collected, they are used
to update model weights. However, what is more
effective is to study the effect of ER when applied
incrementally in an online manner, thus improving
rationale alignment.

10 Ethics Statement

Data. All the datasets that we use in our work
are released publicly for usage and have been duly
attributed to their original authors.

User Study. As part of our user study conducted
in Section 5.5, we collected information about the
time taken to annotate rationales and labels for
instances. We provide the instructions given to
MTurkers in Appendix A.7, along with screenshots



of the UI displayed to them. Further details about
the task setup and results are provided in Section
5.5. Each task is setup in a manner that ensure that
the annotators receive compensation that is above
minimum wage.
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A Appendix
A.1 Section 2 Appendix
G first computes raw importance scores si ∈ Rn,
then normalizes si as probabilities ri using the sig-
moid function.

Broadly, heuristic G’s can either be a gradient-
based, that assign importance scores based on gradi-
ent changes in F (Sundararajan et al., 2017; Sanyal
and Ren, 2021; Shrikumar et al., 2017), sampling-
based, that assign important scores based on the
neighbours/context of a given token (Zeiler and Fer-
gus, 2013; Jin et al., 2019), or attention-based, that
use the attention-scores or a function of them to
assign importance scores. (Ding and Koehn, 2021).

A.2 Section 3 Appendix
A.2.1 ID Generalization
While ER-TEST’s main focus is on evaluating
OOD generalization, ER-TEST also considers
ID generalization as a baseline evaluation. Let
D = {X ,Y}Ni=1 be a M -class text classification
dataset, where X = {xi}Ni=1 are the text inputs,
Y = {ẏi}Ni=1 are the target classes, and N is the
number of instances (xi, ẏi) in D. We call D the
ID dataset. Assume D can be partitioned into train
set Dtrain, dev set Ddev, and test set Dtest, where
Dtest is an ID test set for D. After using ER to train

F on Dtrain, we measure F’s task performance on
the ID test set Dtest. Note that this is a standard pro-
tocol used by existing works to evaluate ER models
(Zaidan and Eisner, 2008; Rieger et al., 2020; Liu
and Avci, 2019; Ross et al., 2017; Huang et al.,
2021; Ghaeini et al., 2019; Kennedy et al., 2020)

A.2.2 Contrast Sets
Given D̃(i)

test(j) (a jth instance belonging to an OOD
test set D̃(i)

test), a perturbation function β
(i)
p is applied

to that instance, where p denotes the kind of per-
turbation taking effect, and it often changes the
target label for that instance. For example, p can
signify semantic (e.g., changing tall to short), nu-
meral (e.g., changing one dog to three dogs), or
entities (e.g., changing dogs to cats). Each per-
turbation type is specific to the dataset it is being
created for, so that instance labels are changed in a
meaningful manner. The resulting set of instances
C(⟩) = β

(i)
p (D̃(i)

test(j))∀j, p are termed as a contrast
set for that dataset. Based on the way they are cre-
ated, contrast sets are a property of the dataset, and
are not created to explicitly challenge F (unlike
adversarial examples (Gao and Oates, 2019)).

A.2.3 Functional Tests
Vocabulary Tests Vocabulary tests are used to
evaluate F’s capability to address changes in the
vocabulary of the text, and is particularly diverse
w.r.t the parts-of-speech it caters to. For exam-
ple, certain vocabulary tests evaluate the relation-
ship (taxonomy) between different nouns in a sen-
tence, whereas some swap the modifiers or the
verbs present in a sentence in a meaningful manner
based on the task at hand, to capture F’s targeted
performance towards such changes (Ribeiro et al.,
2020).

Robustness Tests Robustness tests evaluate F’s
behavior under character-level edits to words in
a sentence, keeping the rest of the context same
so as to not change the overall prediction. They
include testing against typos as well as contractions
in words, as well as addition of tokens that are
irrelevant for the downstream task (like URLs or
gibberish like Twitter handles). (Jones et al., 2020;
Wang et al., 2020)

Logic Tests Testing F’s reasoning capabilities
towards logical changes in a sentence is also im-
portant to evaluate its reliance on shortcut-patterns.
These tests perturb sentences in a logical manner
(by adding or removing negations, or purposefully
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inducing contradictions) that also change the target
label in the same manner. (Talman and Chatzikyri-
akidis, 2018; McCoy et al., 2019)

Entity Tests For certain tasks, named entities
like numbers, locations and proper nouns are not
relevant for predicted a target label, and are often
a source of gender or demographic biases (Mishra
et al.; Mehrabi et al., 2020). Entity tests measure
F’s sensitivity towards changes in named entities
such that the overall context as well as the task
label remains the same (Ribeiro et al., 2020).

A.3 Section 4 Appendix

A.3.1 Tasks and Datasets
To evaluate ER models, ER-TEST considers a di-
verse set of sequence and token classification tasks.
For each, task ER-TEST provides one ID dataset
(annotated with human rationales) and multiple
OOD datasets. Compared to prior works, ER-
TEST’s task/dataset diversity enables more exten-
sive analysis of ER model generalization.

First, we have sentiment analysis, using SST
(movie reviews) (Socher et al., 2013; Carton et al.,
2020) as the ID dataset. For OOD datasets, we use
Yelp (restaurant reviews) (Zhang et al., 2015), Ama-
zon (product reviews) (McAuley and Leskovec,
2013), and Movies (movie reviews) (Zaidan and
Eisner, 2008; DeYoung et al., 2019). Movies’ in-
puts are much longer than the other three datasets’.
For contrast set tests, we use an OOD contrast set
for sentiment analysis released by the authors of
the original paper (Gardner et al., 2020), which are
created for the Movies dataset. Furthermore, for
functional tests, we use an OOD test suite (flight re-
views) from the CheckList (Ribeiro et al., 2020)
which contains both template-based instances to
test linguistic capabilities, as well as real-world
data (tweets).

Second, we have natural language inference
(NLI), using e-SNLI (Camburu et al., 2018; DeY-
oung et al., 2019) as the ID dataset. For the OOD
dataset, we use MNLI (Williams et al., 2017). e-
SNLI contains only image captions, while MNLI
contains both written and spoken text, covering var-
ious topics, styles, and formality levels. For NLI,
we also use an OOD contrast set created for the
MNLI dataset (Li et al., 2020). Functional tests for
NLI are generated from the AllenNLP test suite
(Gardner et al., 2017) for textual entailment.

Third, we have named entity recognition (NER),
using CoNLL-2003 (Sang and De Meulder, 2003;

Lin et al., 2020) as the ID dataset. For the OOD
dataset, we use OntoNotes v5.0 (Pradhan et al.,
2013). CoNLL-2003 contains only Reuters news
stories, while OntoNotes v5.0 contains text from
newswires, magazines, telephone conversations,
websites, and other sources.

A.3.2 Intrinsic Evaluation of ER
ER in general is sensitive to certain hyperparam-
eters for yielding meaningful training curves and
actually attaining alignment between machine and
human rationales. Due to a large set of tunable
hyperparameters, running all configurations of ER
are not feasible. Therefore, we intrinsically eval-
uate hyperparameter configurations by assessing
the loss curves (which model alignment between
machine and human rationales) w.r.t different hy-
perparameters values. We observe that the accept-
able band of learning rates for ER is very narrow,
and we use 2e−5 in all of our experiments. Fur-
thermore, we also observe that setting λER = 1 and
γER = 100 yields the most drop in the loss curves
while training, so we use these hyperparameters
for the rest of our experiments. We detail these
experiments in Appendix A.3.3.

A.3.3 Intrinsic Evaluation: evaluating ER’s
sensitivity to hyperparameters

When using ER to train F , it is important to assess
whether ER exhibits expected training behavior,
orthogonally to task performance. If ER improves
task performance, this kind of analysis can help us
better understand ER’s effectiveness. Conversely,
if ER does not improve task performance, such
analysis can help us identify the problem.

Let γER > 0 be the rationale scaling factor, used
to scale ŝi prior to sigmoid normalization. If the
magnitudes of the ŝi scores are lower, then the r̂i
scores will be closer to 0.5 (i.e., lower confidence).
However, scaling ŝi by γER > 1 will increase the
magnitude of ŝi, yielding r̂i scores closer to 0 or 1
(i.e., higher confidence).

Motivated by this, ER-TEST’s intrinsic evalua-
tion is based on machine-human rationale align-
ment, captured by the ER loss LER = Φ(r̂i, ṙi).
When using ER, we should generally expect the
ER loss to decrease as F is trained. In practice, this
may not always be the case, even when ER leads
to slightly higher task performance (which is likely
a mirage caused by lucky random seeds)! That
is, by definition, non-decreasing ER loss signals
ineffective ER usage, since the machine rationales



Figure 7: ER Loss Curves (Rationale Scaling Factor). For rationale extractor, we use IxG

Figure 8: ER Strength vs. Task Performance. For
various combinations of sentiment analysis dataset and
ER strength, we plot task performance using IxG+MAE.

are not becoming more similar to the human ra-
tionales. This can stem from a number of issues:
e.g., poor choice of ER criteria Φ, improper ER
strength λER, improper rationale scaling factor γER,
noisy human rationale ṙi, insufficient F capacity.
Thus, we measure machine-human rationale align-
ment as the first step in diagnosing such issues. Let
ER loss curve denote a chart which plots LER vs.
the number of train epochs. For each combination
of ER criteria Φ and some training configuration,
we plot ER loss curves for the training set. Each
component of our intrinsic evaluation varies a dif-
ferent hyperparameter in the training configuration:
(A) ER strength λER; (B) rationale scaling factor
γER; and (C) learning rate α. In contrast, prior
works do not explore the relationship between LER
and these training variables (Huang et al., 2021;
Ghaeini et al., 2019).

For intrinsic evaluation, we use ER strength
λER = 1, rationale scaling factor γER = 1, and
learning rate α = 2e−5, unless otherwise speci-
fied. As a proof of concept, we focus on SST here,
but plan to add other datasets in future work.

A.3.4 Misc. Details

All models are trained on GeForce GTX 1080 Ti
and Quadro RTX 6000 GPUs. All implementations
are done using the HuggingFace API (Wolf et al.,
2019).

ER Strength

ER criteria 0.5 1 10 100 300

IxG+MSE 0.91 1.52 1.41 1.29 1.35
IxG+MAE 1.89 2.01 1.72 1.80 1.74
IxG+BCE 1.99 2.17 1.65 1.65 1.75

IxG+Huber 1.85 2.09 2.24 2.27 2.40
IxG+Order 2.15 2.40 1.60 2.53 1.89

Table 5: Relative Decrease in ER Loss. For various
ER strengths, we report the percentage decrease in ER
train loss (on SST), from max point to min point.

A.3.5 ER Strength
Fig. 10 displays the ER loss curves for different
ER strengths λER = [0.5, 1, 10, 100, 300], on SST
using MAE. Among the λER values, we see that
λER = 1 yields ER loss curves with the greatest de-
crease (Table 5), signaling good ER optimization.

A.3.6 Rationale Scaling Factor
Fig. 7 displays the ER loss curves for different
rationale scale factors γER = [1, 10, 100, 1000],
on SST. Among the four γER values, we see that
γER = 100 yields ER loss curves with the greatest
decrease (Table 6), signaling good ER optimization.
Meanwhile, although ER works use γER = 1 by
default, we see that γER = 1 yields nearly flat ER
loss curves for all five Φ choices. This suggests
poor ER optimization. Based on these results, we
fix γER = 100 for all experiments (Sec. 5), thus
greatly reducing the hyperparameter search space.

A.3.7 Learning Rate
Here, we obtain similar conclusions, with α =
2e−5 yielding the best ER loss curves. Fig. 11
displays the ER loss curves for different learning
rates α = [2e−6, 2e−5, 2e−4]. Among the three
learning rates, we see that α = 2e−5 yields the
most steadily decreasing ER loss curves.

A.3.8 ER performance with different
hyperparameters

ER Strength vs. Task Performance To measure
ER’s impact on task performance, we plot F ’s task
performance as a function of ER strength λER. This
is conducted for ID test sets.



Figure 9: Task Performance vs. ER Loss. Here we use IxG as rationale extractor

Figure 10: ER Loss Curves (ER Strength). Here, we use the MAE criterion and IxG as rationale extractor

Rationale Scaling Factor

ER criteria 1 10 100 1000

IxG+MSE 0.69 4.60 18.35 11.41
IxG+MAE 0.04 0.40 1.29 1.17
IxG+BCE 0.10 0.34 0.90 1.03

IxG+Huber 0.10 7.75 16.67 9.30
IxG+Order 7.21 9.38 47.97 1.89

Table 6: Relative Decrease in ER Loss. For various
ER rationale scaling factors, we report the percentage
decrease in ER train loss (on SST), from max point to
min point.

Dev Test

ER criteria Slope (↓) R2 (↑) Slope (↓) R2 (↑)

IxG+MSE -7.48 0.050 -6.75 0.059
IxG+MAE -128.60 0.083 -133.03 0.110
IxG+BCE -17.48 0.003 -56.30 0.040

IxG+Huber -23.59 0.091 -8.40 0.022
IxG+Order -0.49 0.101 -0.085 0.004

Table 7: ER Loss vs. Task Performance. We summarize
the line plots in Fig. 9 (ER Loss vs. Task Performance), using
slope and R2 score (Sec. A.3.8). Ideally, Fig. 9’s lines would
have low slope and high R2, indicating that ER helps improve
task performance. We see that MAE yields the best ER results.

For each sentiment analysis dataset, Fig. 8
shows task performance for ER strengths λER =
[0, 0.5, 1, 10, 100, 300], using MAE. Note that
λER = 0 is equivalent to training the NLM with-
out ER (i.e., None in Table 1). For the ID dataset
(SST), we see that all ER strengths yield very sim-
ilar task performance, suggesting that ER has lit-
tle effect on ID task performance. However, for
the OOD datasets (Amazon, Yelp, Movies), task
performance generally increases as λER increases,
showing ER’s positive impact on NLM generaliza-
tion. Overall, based on OOD task performance, we
find that λER = [1, 100] are the best ER strengths.
This aligns with the results of Sec. A.3.5.

ER criteria

Sentiment Analysis (Out-of-Domain)

Amazon Yelp Movies Mean

None 90.72 (±1.36) 92.07 (±2.66) 89.83 (±6.79) 90.87 (± 3.60)

IxG+MAE (λER = 0.5) 90.12 (±2.98) 92.27 (±3.29) 92.00 (±5.68) 91.46 (±0.91)
IxG+MAE (λER = 1) 92.02 (±0.25) 94.55 (±0.30) 95.50 (±1.32) 94.02 (±2.15)

IxG+MAE (λER = 10) 91.27 (±0.28) 93.10 (±1.08) 90.67 (±3.79) 91.68 (±1.06)
IxG+MAE (λER = 100) 92.33 (±0.28) 94.92 (±0.56) 95.50 (±0.50) 94.25 (±1.89)
IxG+MAE (λER = 300) 91.83 (±0.42) 93.97 (±1.28) 95.00 (±0.50) 93.60 (±1.74)

IxG+MAE (γER = 1) 90.63 (±1.88) 92.32 (±2.23) 88.67 (±4.25) 90.54 (±2.22)
IxG+MAE (γER = 10) 92.30 (±1.21) 93.01 (±2.14) 96.83 (±1.04) 94.07 (±3.89)
IxG+MAE (γER = 100) 92.02 (±0.25) 94.55 (±0.30) 95.50 (±1.32) 94.02 (±2.15)

IxG+MAE (γER = 1000) 90.47 (±2.06) 92.80 (±2.90) 92.67 (±6.25) 91.98 (±1.14)

IxG+MAE (α = 2e−4) 89.35 (±2.85) 91.23 (±2.84) 93.00 (±2.65) 91.19 (±2.22)
IxG+MAE (α = 2e−5) 92.02 (±0.25) 94.55 (±0.30) 95.50 (±1.32) 94.02 (±2.15)
IxG+MAE (α = 2e−6) 88.60 (±1.60) 83.27 (±6.49) 81.17 (±6.93) 84.34 (±9.70)

Table 8: Task Performance vs. {ER Strength (λER), Ratio-
nale Scaling Factor (γER)}. Higher values are better.

ER Loss vs. Task Performance To measure
ER’s impact on task performance, we plot F ’s task
performance as a function of ER loss LER. This is
conducted for both ID and OOD test sets.
Fig. 9 displays the SST results for ID task perfor-
mance (accuracy) vs. ER loss. For a given ER cri-
terion, each point in the corresponding scatter plot
represents the checkpoint at some train epoch of the
ER-trained model, evaluated on either the dev set or
test set (yielding two point sets). Fitting each point
set with linear regression, we find that there is an
inverse relationship between task performance and
ER loss. In other words, higher machine-human ra-
tionale alignment (i.e., low ER loss) corresponds to
higher task performance, which validates the usage
of ER to improve generalization. Table 7 displays
the slopes and R2 scores of the lines in Fig. 9.
The slope indicates the strength of the relationship
between machine-human rationale alignment and
task performance (lower is better), while the R2

score indicates how accurately each line fits its cor-
responding data points. Among the five ER criteria,
across dev and test, we find that MAE has the low-
est slopes and highest R2 scores overall, suggesting
that using ER with MAE is most effective.



Figure 11: ER Loss Curves (Learning Rate). Here we use IxG as rationale extractor

ER criteria

Sentiment Analysis

In-Domain Out-of-Domain

SST Amazon Yelp Movies

None 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

IxG+MSE 0.32 (±1.05) -1.25 (±1.20) -2.33 (±4.64) -6.50 (±40.66)
IxG+MAE -0.09 (±0.24) -0.58 (±3.45) -0.94 (±11.21) -7.00 (±40.66)
IxG+BCE -0.16 (±0.33) 0.46 (±4.11) 0.96 (±26.99) 0.16 (±47.72)

IxG+Huber 0.12 (±0.42) 0.19 (±2.25) -1.05 (±4.11) -4.33 (±37.72)
IxG+Order 1.90 (±1.38) 6.98 (±3.87) 19.86 (±45.54) 21.66 (±35.72)

Table 9: ID/OOD Opportunity Cost. Lower values are
better.

Percentage of Dev Instances in incor→cor Group, Binned by FNo-ER Target Class Confidence

0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

22.85 26.00 40.38 49.20 28.78 0.00 0.00 0.00 0.00 0.00

Table 10: Change in Target Class Confidence. For bins
where FNo-ER’s target class confidence is low, there is a higher
percentage of instances that are predicted incorrectly/correctly
without/with ER. This suggests that instances with low target
class confidence are more likely to benefit from ER.

ER Opportunity Cost An ER-trained NLM
Ftask, ER and a non-ER-trained NLM Ftask, No-ER
are likely to yield different outputs given the same
inputs. Let D+

ER ⊆ D and D+
No-ER ⊆ D denote

the sets of instances predicted correctly by Ftask, ER
and Ftask, No-ER, respectively. Ideally, we would
have D+

No-ER ⊂ D+
ER. This means there is no oppor-

tunity cost in using ER, as ER increases the number
of correct instances without turning any previously-
correct incorrect. However, this may not necessar-
ily be the case, so we measure ER’s opportunity
cost as follows. Let n+

ER = |D+
ER\(D

+
ER ∩D+

No-ER)|
be the number of instances predicted correctly by
Ftask, ER, but not by Ftask, No-ER. Let n+

No-ER =
|D+

No-ER\(D
+
No-ER ∩ D+

ER)| be the number of in-
stances predicted correctly by Ftask, No-ER, but not
by Ftask, ER. Then, the opportunity cost of using
ER is defined as:

oER =
n+

No-ER − n+
ER

|D|
(3)

In practice, instead of defining oER for all of D, we
only consider test sets Dtest and D̃test.

Change in Target Class Confidence Let FNo-ER
and FER denote non-ER-trained (vanilla) and
ER-trained NLMs, respectively. For each test

Figure 12: Change in Target Class Confidence

instance, we plot FNo-ER’s predicted target class
confidence probability vs. FER’s. Each point in
the plot is color-coded by whether ER changes
the prediction from correct to incorrect, changes
the prediction from incorrect to correct, keeps
the prediction as correct, or keeps the prediction
as incorrect. The purpose of this plot is to
visualize how individual instances’ predictions
are affected by ER. We conduct this for ID dev sets.

We consider ER with the MAE criterion,
trained/evaluated on SST (via dev ID task per-
formance). Fig. 12 visualizes how ER changes
each dev instance’s target class confidence as a re-
sult of ER, color-coding each point w.r.t. how ER
changes the model’s predicted class for this point.
Among instances for which FNo-ER’s target class
confidence is low, there is a higher percentage of
instances that are predicted incorrectly/correctly
without/with ER (i.e., incor→cor). This suggests
that, for FNo-ER, instances with low target class con-
fidence are more likely to benefit from ER (Table
10). Also, based on the T-test, target class confi-
dence scores are significantly higher (p < 0.005)
with ER than without.

Table 9 displays the opportunity cost results for
sentiment analysis. Generally, the opportunity cost
results mirror the task performance results in Table
1, such that the methods with highest task perfor-
mance tend to have the lowest opportunity cost.
However, using opportunity cost, the variance is
very high for OOD datasets, making it difficult



to compare methods. In future work, we plan to
modify the opportunity cost metrics to better ac-
commodate OOD settings.

A.3.9 Efficient hyperparameter tuning with
ER-TEST

In intrinsic evaluation (Sec. A.3.2), we used ER
loss curves as priors for selecting three key ER
hyperparameters (i.e., ER strength λER, rationale
scaling factor γER, learning rate α). In Sec. 5, we
assumed a tuning budget that allows only one value
for each of λER, γER, and α. By not tuning these
hyperparameters, we greatly reduced our hyperpa-
rameter search space. Since ER has little effect
on ID task performance, tuning based on ID task
performance is unlikely to have helped anyway.
ER works better on OOD data, but it also does
not make sense to tune based on OOD task perfor-
mance (otherwise, it would not be OOD). Though
the ER hyperparameters chosen via intrinsic evalu-
ation generally improved OOD task performance,
we seek to verify their effectiveness compared to
other possible hyperparameter values.

In Table 8, we report sentiment analysis OOD
(Amazon, Yelp, Movies) task performance, while
varying each of the three hyperparameters. We
include a Mean column, which averages the Ama-
zon/Yelp/Movies columns. Our hyperparameters
chosen via ER loss curves are highlighted in blue .
For λER, 1 (ours) and 100 yield very similar Mean
results, while considerably beating the other three
values. For γER, we see the same trend for 100
(ours) and 10. For α, 2e−5 (ours) vastly outper-
forms other values in all columns. These results
validate the utility of ER-TEST’s intrinsic evalua-
tion for low-resource ER hyperparameter tuning.

A.4 RQ1

NER Results We also have named entity recog-
nition (NER) task, using CoNLL-2003 (Sang and
De Meulder, 2003; Lin et al., 2020) as the ID
dataset. For the OOD dataset, we use OntoNotes
v5.0 (Pradhan et al., 2013). CoNLL-2003 con-
tains only Reuters news stories, while OntoNotes
v5.0 contains text from newswires, magazines, tele-
phone conversations, websites, and other sources.
In Table 15, we display the ID and OOD results of
NER. In ID, we see more variance in task perfor-
mance among ER criteria, although the variance
is still quite small among the best methods (MSE,
MAE, Huber). Here, MAE yields the highest task
performance, while BCE yields the lowest by far.

In OOD, MAE still performs best, while MSE and
Huber are competitive.

Functional Tests We provide details for differ-
ent functional tests listen in Section 3.3. We break-
down each subcategory of functional tests and show
performances of different ER criteria on those indi-
vidual tests. For functional tests on the sentiment
analysis task, refer to Table 11. NLI functional
tests are listed in Table 14.

A.5 RQ2

A.5.1 Lexicon-matching
Let LD be a list of lexicons curated by human
annotators, specific to a given dataset D. Let l(·)
be an indicator function that searches for a given
lexicon list in all the tokens of an instance, and
returns a binary representation of the same size as
the instance with 1s in places with lexicon matches
(0 otherwise). Therefore, we can obtain distantly-
supervised human rationales ṙi = l(LD, xi) and
apply rationale alignment criteria as described in
Section 4.1.

Each lexicon is matched to n-grams(uni-/bi-/tri-
grams), which leads to 93% of the train set in-
stances to be matched. Additionally, since we com-
bined two lexicons as resources, there are words
appeared as positive and negative. We maintain lex-
icon overlapping with different sentiment polarities
when matching with tokens. For equal compari-
son, we use instance-based rationales on the same
train subset. We also run contrast set tests and
functional tests on both lexicon-based and instance-
based methods. The results are shown in Table 12
and Table 13.

A.5.2 Hate Speech Detection Tests
Task-Level Rationales For example, Kennedy
et al. (2020) used a “blacklist” lexicon to distantly
supervise human rationales for the hate speech
detection task. In the past, hate speech detection
models were largely oversensitive to certain
group identifier words (e.g., “black”, “Muslim”,
“gay”), almost always predicting hate speech for
text containing these words. To address this,
they first manually annotated a lexicon of group
identifiers that should be ignored for hate speech
detection. Then, for all training instances, they
automatically marked only tokens belonging to
the lexicon as negative (and the rest as positive).
By using these human rationales for ER, they
trained the NLM to be less biased w.r.t. these



Capability Test Type ER criteria

None IxG+MSE IxG+MAE IxG+BCE IxG+Huber IxG+Order

Vocabulary

Sentiment-laden words in context 1.20 (±0.74) 0.60 (±0.16) 1.27 (±0.84) 1.00 (±0.86) 1.13 (±0.50) 0.80 (±0.28)
Change Neutral words with BERT 5.59 (±0.16) 5.13 (±0.90) 5.40 (±0.28) 5.67 (±0.68) 5.67 (±0.74) 5.60 (±1.63)

Intensifiers 2.13 (±1.63) 1.80 (±0.16) 1.40 (±0.16) 2.67 (±0.77) 2.67 (±0.96) 1.60 (±0.65)
Reducers 23.85 (±7.18) 35.00 (±46.01) 27.38 (±5.95) 25.00 (±25.00) 17.46 (±13.65) 0.77 (±0.43)

Add +ve phrases 1.40 (±0.28) 2.33 (±1.84) 0.67 (±0.50) 1.27 (±1.00) 2.33 (±1.76) 2.07 (±1.52)
Add -ve phrases 22.86 (±7.43) 14.80 (±1.40) 20.67 (±4.07) 17.40 (±3.64) 20.67 (±3.35) 16.93 (±1.91)

Robustness

Adding Random URLs and Handles 9.80 (±0.48) 7.27 (±2.23) 9.07 (±1.80) 7.87 (±2.76) 10.27 (±0.9) 9.6 (±2.47)
Punctuations 3.93 (±0.89) 1.93 (±0.41) 3.00 (±1.02) 2.87 (±0.19) 3.80 (±0.28) 2.67 (±0.34)

Typos 2.60 (±0.90) 2.53 (±0.82) 2.60 (±0.57) 3.13 (±0.90) 2.60 (±0.75) 2.00 (±0.86)
2 Typos 3.93 (±0.65) 3.87 (±1.24) 4.27 (±0.5) 4.13 (±1.2) 4.6 (±0.43) 3.33 (±0.25)

Contractions 1.00 (±0.00) 0.80 (±0.33) 0.87 (±0.25) 0.80 (±0.43) 0.47 (±0.09) 0.53 (±0.50)

Logic
Negatives 5.20 (±2.75) 4.27 (±1.65) 4.47 (±3.07) 4.47 (±1.75) 3.93 (±1.57) 5.67 (±1.68)

Non-negatives 59.73 (±9.48) 59.00 (±15.81) 37.47 (±10.41) 63.27 (±17.61) 59.07 (±14.97) 45.87 (±24.13)
Negation of positive with neutral stuff in the middle 32.2 (±14.65) 35.13 (±1.91) 35.00 (±16.52) 19.00 (±8.66) 40.93 (±4.31) 29.13 (±10.60)

Entity
Change Names 0.70 (±0.14 1.91 (±0.71) 1.11 (±0.51) 0.81 (±0.14) 1.61 (±0.62) 1.91 (±1.51)

Change Locations 3.33 (±0.74) 2.73 (±1.15) 3.40 (±0.86) 3.07 (±1.79) 3.00 (±0.33) 3.20 (±1.57)
Change Numbers 0.80 (±0.00) 0.53 (±0.34) 0.47 (±0.41) 0.60 (±0.33) 0.60 (±0.43) 0.67 (±0.81)

Table 11: Functional Tests: Sentiment Analysis

Figure 13: Functional Tests’ Failure Rates (lower the better): We plot the failure rates of the four functional tests (vocab.,
robust., logic, entity) as described in Section 3.3, as well as the overall failure rate on all of the tests combined (mean). Each of
the values are out of 100, but plotted accordingly for visible comparison. Here we use IxG as rationale extractor.

Method ER Criteria

Sentiment Analysis

Original Contrast Delta

Lexicon
IxG+MAE 91.46 (±0.72) 89.82 (±2.46) -1.64
IxG+Huber 90.64 (±1.25) 88.52 (±2.25) -2.12

Instance
IxG+MAE 91.12 (±0.59) 89.82 (±1.20) -1.3
IxG+Huber 89.20 (±1.67) 86.13 (±1.74) -3.15

Table 12: Contrast Set Tests: Lexicon-based VS
Instance-based. We use

group identifiers. For the purpose of our study, we
use the lexicons as used by (Jin et al., 2021) to
generate distantly-supervised rationales for the
Stormfromt (Stf) dataset (de Gibert et al., 2018).
Each instance in the Stf dataset is matched to
one or more lexicons by simple character-level

Capability Vocabulary Robustness Logic Entity Overall

Lexicon 10.11 4.21 32.27 2.28 12.22
Instance 11.90 3.574 30.2 1.86 11.89

Table 13: Functional Tests: Lexicon-based VS
Instance-based. Here we use MAE criterion and IxG as
rationale extractor.

matching, and the rationales are generated as
described above. We train F with the Stf dataset.
We report all accuracies in Table 16. As it was
observed in Section 5.2, ER does not lead to a
significant improvement in performance for the
Stf test set. However, it is important to note
that “blacklisting” group identifier lexicons does



Capability Test Type ER criteria

None IxG+MSE IxG+MAE IxG+BCE IxG+Huber IxG+Order

Vocabulary
Antonym in Hypothesis 71.66 (±20.98) 64.77 (±21.97) 84.55 (±11.53) 65.88 (±21.40) 74.77 (±20.41) 62.55 (±13.16)
Synonym in Hypothesis 32.61 (±7.41) 24.11 (±7.62) 30.11 (±6.42) 25.88 (±6.86) 30.77 (±7.07) 29.27 (±6.95)
Supertype in Hypothesis 24.44 (±15.95) 11.00 (±3.62) 13.77 (±6.71) 9.31 (±5.90) 8.77 (±8.06) 13.55 (±7.10)

Robustness

Punctuation 14.55 (±4.13) 9.44 (±2.79) 11.33 (±1.63) 8.11 (±1.19) 10.00 (±2.58) 9.88 (±2.51)
Typo 15.88 (±3.44) 10.22 (±3.04) 12.33 (±1.63) 9.66 (±2.10) 10.88 (±2.68) 10.77 (±2.52)

2 Typos 15.33 (±3.68) 9.77 (±1.81) 12.00 (±1.76) 9.44 (±2.31) 11.11 (±2.99) 10.00 (±2.66)
Contractions 24.69 (±6.98) 24.69 (±8.72) 25.92 (±9.07) 22.22 (±9.07) 25.92 (±7.40) 14.81 (±5.23)

Logic
Negation in the Hypothesis 50.88 (±32.25) 27.77 (±37.24) 9.77 (±15.66) 41.33 (±41.54) 15.22 (±28.77) 18.44 (±23.21)

Induce Contradiction 99.88 (±0.31) 98.54 (±3.78) 91.69 (±20.37) 98.65 (±2.56) 98.42 (±4.44) 99.88 (±0.31)
Same Premise and Hypothesis 14.22 (±8.63) 14.33 (±10.14) 19.44 (±12.12) 18.16 (±12.69) 14.38 (±9.23) 17.38 (±10.16)

Entity Switch one Entity in the Hypothesis 77.21 (±39.57) 88.88 (±24.11) 79.91 (±22.20) 85.18 (±30.04) 83.83 (±24.25) 96.40 (±4.85)

Table 14: Functional Tests: NLI

Methods

NER

In-Distribution Out-of-Distribution

CoNLL-2003 OntoNotes v5.0

None 77.24 (±0.20) 20.78 (±0.41)

IxG+MSE 78.02 (±0.69) 21.60 (±0.46)
IxG+MAE 78.34 (±0.81) 21.73 (±0.31)
IxG+BCE 64.53 (±13.22) 17.32 (±3.59)

IxG+Huber 77.83 (±1.09) 21.38 (±0.16)
IxG+Order 72.62 (±5.01) 19.14 (±1.75)

Table 15: ID/OOD Task Performance on NER (Instance-
Based Human Rationales).

not lead to a drop in ID performance either.
Benefits of “blacklisting” are then observed in
OOD generalization. We evaluate ER methods
on OOD hate speech detection datasets like
HatEval (Barbieri et al., 2020) and Gab Hate
Corpus (GHC) (Kennedy et al., 2018). All of
the datasets contain binary labels for hateful and
non-hateful content. The Stf dataset is collected
from a white-supremacist forum, whereas HatEval
instances are tweets and GHC instances are taken
from the Gab forum. Table 16 shows that while
the improvements in HatEval are not significant,
there are significant accuracy improvements for
the GHC test set, which are due to the Order ER
criterion.

Fairness Tests In addition to generic perfor-
mance metrics like accuracy, we also measure
group identifier bias (against the groups detailed
by group identifier lexicons) by evaluating the
False Positive Rate Difference (FPRD) as shown
by (Jin et al., 2021). FPRD is computed as∑

z |FPRz − FPRoverall|, where FPRz is the false
positive rate of all of the test instances mentioning
group identifier z, and FPRoverall is the false posi-
tive rate of all the test instance. Essentially, FPRD
evaluates if F is more biased against a given group
identifier z, than all of the groups. A lower FPRD

ER Criteria

Hate Speech Detection

In-Distribution Out-of-Distribution

Stf HatEval GHC

Accuracy ↑ FPRD ↓ Accuracy ↑ FPRD ↓ Accuracy ↑ FPRD ↓

None 89.50 (±0.20) 1.11 (±0.58) 63.68 (±0.78) 1.64 (±0.66) 89.43 (±0.98) 1.09 (±0.12)

IxG+MSE 89.46 (±0.21) 2.18 (±0.47) 64.30 (±1.52) 1.99 (±0.26) 88.19 (±0.62) 1.50 (±0.10)
IxG+MAE 89.59 (±0.06) 1.39 (±0.62) 63.30 (±0.49) 1.80 (±0.59) 88.07 (±1.66) 1.43 (±0.24)
IxG+BCE 89.42 (±0.71) 1.87 (±0.45) 63.54 (±0.57) 1.87 (±0.45) 88.99 (±0.83) 1.36 (±0.58)

IxG+Huber 89.50 (±0.51) 1.90 (±0.35) 64.85 (±1.50) 2.11 (±0.27) 87.77 (±1.21) 1.84 (±0.34)
IxG+Order 89.21 (±1.18) 0.56 (±0.09) 64.46(±1.18) 0.92 (±0.92) 92.84 (±0.46) 0.59 (±0.25)

Table 16: ID/OOD Task Performance (Distantly-
supervised Human Rationales): Higher values for accuracy
and lower values for FPRD are considered better. All models
displayed are trained on the ID dataset (Stf) with distantly
supervised rationales (for ER criteria) and no rationales (for
None) and evaluated on ID and OOD test splits.

value indicates less biased against the listed group
identifiers by F .

Table 16 lists the FPRD values of all the ER cri-
teria in ID and OOD datasets. While all other crite-
ria suffer with higher bias than None, we observe
that Order criterion consistently leads to the least
bias, both in-distribution and out-of-distribution.
Furthermore, the reduction in bias is significant
when compared to None. Interestingly, Order
ER criterion was initially conceived for distantly-
supervised rationales (Huang et al., 2021), and the
authors of the original paper also demonstrated ex-
periments with rationales generated from lexicons
where Order criterion leads to improvements. Our
observations are in-line with theirs, and we also
show its benefit in reducing bias in F .

A.6 RQ3
A.6.1 Details for Instance Prioritisation

Experiments
In this section, we provide further implementation
details for confidence-based instance prioritisation
experiments as described in Section 4.3.

Given that we have 3-seed runs for the None
model in Table 1, we extract the confidence scores
based on the given metric (LC/HC/LIS/HIS), and
then average these confidence/importance scores



across the 3 seed runs to obtain a single score for
every instance. This process is done for training set
instances only. This is followed by ranking each
instance by the aggregated confidence metric and
selecting the top k% of samples from this ranking.
For experiments with random sampling based pri-
oritisation, we generate 3 random subsets selected
in a uniform manner.

While training in this setting, we ensure that
within each batch, certain (one third to be specific)
set of instances have available rationales. For these
instances, we calculate the ER loss LER, whereas,
for the rest of the instances in the batch, we com-
pute the task loss Ltask. All prioritisation settings
are trained with 3 different model seeds and the
aggregated results for ID and OOD datasets are
shown in Table 4.

k (in %) Selection Method

Sentiment Analysis

In-Distribution Out-of-Distribution

SST Amazon Yelp Movies

None - 94.22 (±0.77) 90.72 (±1.36) 92.07 (±2.66) 89.83 (±6.79)
100 - 94.11 (±0.38) 92.02 (±0.25) 94.55 (±0.30) 95.50 (±1.32)

5
Random 94.36 (±0.05) 91.57 (±0.10) 93.36 (±0.15) 92.39 (±2.50)

LC 93.14 (±1.97) 90.72 (±0.43) 93.50 (±0.53) 93.17 (±1.26)
HC 94.32 (±0.42) 91.57 (±0.19) 93.03 (±0.81) 91.33 (±3.09)
LIS 93.92 (±1.07) 92.42 (±0.48) 94.28 (±0.31) 96.50 (±1.5)
HIS 93.94 (±0.83) 90.58 (±0.95) 91.47 (±2.37) 92.00 (±4.58)

15
Random 94.46 (±0.21) 90.06 (±1.17) 90.81 (±2.63) 86.22 (±2.94)

LC 93.48 (±0.80) 90.12 (±2.66) 90.90 (±5.30) 83.67 (±14.02)
HC 94.39 (±0.27) 90.38 (±1.12) 93.48 (±0.64) 91.33 (±5.11)
LIS 94.25 (±0.37) 91.15 (±0.22) 94.00 (±0.56) 95.33 (±1.26)
HIS 94.47 (±0.22) 91.13 (±0.60) 92.67 (±0.98) 93.50 (±3.12)

50
Random 93.47 (±0.02) 90.28 (±1.42) 91.85 (±2.11) 89.78 (±5.68)

LC 87.07 (±5.15) 78.82 (±20.68) 77.73 (±26.53) 76.67 (±19.08)
HC 92.93 (±0.17) 92.15 (±0.36) 94.48 (±0.94) 91.00 (±6.50)
LIS 93.17 (±0.55) 90.60 (±0.25) 92.72 (±0.53) 93.50 (±0.87)
HIS 94.23 (±0.65) 88.85 (±2.67) 91.47 (±1.47) 93.67 (±1.89)

Table 17: Instance Prioritisation Methods (with ID/OOD
Performance): All values are accuracy (higher the better)
on sentiment analysis. None corresponds to models trained
without ER, where k = 100% corresponds to no annotation
budget. Each of the k = [5, 15, 50]% have 3 instance pri-
oritisation methods. □ corresponds to cases where HC and
Random are significantly similar and greater than LC. ∗ cor-
responds to cases where HC is significantly greater than Ran-
dom and greater than LC. • corresponds to cases where all the
three methods are significantly similar.⋄ and ⋆ correspond to
cases where the 100% ER setup is significantly similar and
greater than None respectively. All tests are conducted with
(p < 0.05).

A.7 RQ4

A.7.1 MTurk Annotation
In this section, we demonstrate the MTurk exper-
iment setup. Each MTurk annotator is paid mini-
mum wage. Figures 14, 15 and 16 demonstrate UIs
used by MTurk annotators for time-budget experi-
ments.

A.7.2 Task Setup
Each task is timed and have the same set of 200 in-
stances to be annotated. Each instance is annotated

by three annotators.
Using the annotations we receive, we aggregate

the time taken across all annotators and instances
to obtain a rough time estimate taken to annotate
one instance for a given task.



Figure 14: Label + Expl: Instructions and setup for Label + Expl annotation

Figure 15: Only Expl: Instructions and setup for Only Expl annotation

Figure 16: Only Label: Instructions and setup for Only Label annotation


